Quick Review

When estimating irrational numbers, the easiest way to compare values is by squaring (or cubing) the given values.

Ex: Between which two consecutive numbers would $\sqrt[3]{50}$ be located?

B. 2 and 3
$$\uparrow \qquad \uparrow$$

$$\sqrt[3]{8} \qquad \sqrt[3]{27}$$

Since it is the **cube** root of 50, cube each number. C would be the answer because 50 is between 27 and 64.

Using the number line, which point is the best estimate of:

1.
$$-\sqrt{20}$$

4.
$$-\sqrt{3}$$

2.
$$\sqrt{7}$$

5.
$$\sqrt[3]{3}$$

3.
$$\sqrt[3]{36}$$

6.
$$\sqrt[3]{75}$$

7.
$$\sqrt{130}$$

10.
$$\sqrt[3]{40}$$

8.
$$\sqrt{38}$$

11.
$$\sqrt{48}$$

9.
$$\sqrt[3]{100}$$

12.
$$\sqrt{151}$$

Quick Review

When estimating irrational numbers, the easiest way to compare values is by squaring (or cubing) the given values.

Ex: Between which two consecutive numbers would $\sqrt[3]{50}$ be located?

B. 2 and 3
$$\uparrow \qquad \uparrow$$

$$\sqrt[3]{8} \qquad \sqrt[3]{27}$$

Since it is the **cube** root of 50, cube each number. C would be the answer because 50 is between 27 and 64.

Using the number line, which point is the best estimate of:

1.
$$-\sqrt{20}$$

4.
$$-\sqrt{3}$$

2.
$$\sqrt{7}$$

5.
$$\sqrt[3]{3}$$

3.
$$\sqrt[3]{36}$$

6.
$$\sqrt[3]{75}$$

7.
$$\sqrt{130}$$

10.
$$\sqrt[3]{40}$$

8.
$$\sqrt{38}$$

11.
$$\sqrt{48}$$

9.
$$\sqrt[3]{100}$$

12.
$$\sqrt{151}$$

Between what two consecutive integers do the following real numbers lie between?

√5	$\sqrt{38}$	√53
√99	³ √26	³ √214
$\sqrt{227}$	√77	√171
√194	3√80	$\sqrt{147}$
3√999	³ √119	√380

Between what two consecutive integers do the following real numbers lie between?

√5	$\sqrt{38}$	√53
√99	³ √26	³ √214
$\sqrt{227}$	√77	√171
√194	3√80	$\sqrt{147}$
3√999	³ √119	√380

Quick Review!

Square Roots!

Think! What number multiplied by itself equals 4?

$$2 \times 2 = 4$$
 so... $\sqrt{4} = 2$

Cube Roots!

Think!
What number
multiplied **three**times (I x w x h)
equals 27?

so...
$$\sqrt[3]{27} = 3$$

$\sqrt{16}$	$-\sqrt{4}$	³ √64	$\pm\sqrt{361}$
$\sqrt{36}$	$-\sqrt{144}$	√81	$\sqrt{-289}$
$h^2 = 121$	$\sqrt{100}$	$-\sqrt{400}$	$s^2 = 81$
$\sqrt{400}$	$\frac{1}{100} = d^2$	$-\sqrt{\frac{25}{441}}$	3√−512
$900 = y^2$	$\sqrt{\frac{-81}{100}}$	$x^2 = \frac{81}{169}$	$256 = z^2$
$-\sqrt{9}$	$x^2 = 49$	$-\sqrt{36}$	√ 169

Quick Review!

Square Roots!

Think! What number multiplied by itself equals 4?

$$2 \times 2 = 4$$
 so... $\sqrt{4} = 2$

Cube Roots!

Think!
What number
multiplied **three**times (I x w x h)
equals 27?

so...
$$\sqrt[3]{27} = 3$$

$\sqrt{16}$	$-\sqrt{4}$	³ √64	$\pm\sqrt{361}$
$\sqrt{36}$	$-\sqrt{144}$	√81	$\sqrt{-289}$
$h^2 = 121$	$\sqrt{100}$	$-\sqrt{400}$	$s^2 = 81$
$\sqrt{400}$	$\frac{1}{100} = d^2$	$-\sqrt{\frac{25}{441}}$	3√−512
$900 = y^2$	$\sqrt{\frac{-81}{100}}$	$x^2 = \frac{81}{169}$	$256 = z^2$
$-\sqrt{9}$	$x^2 = 49$	$-\sqrt{36}$	√ 169

_			
$\sqrt{\frac{16}{49}}$	$324 = a^2$	$t^2 = 36$	$\sqrt[3]{\frac{27}{64}}$
$a^2 = \frac{25}{121}$	$\sqrt{\frac{49}{100}}$	$\pm \sqrt{0.81}$	If a square has an area of 256 in ² , what is the side length?
If a square has an area of 81 in², what is the side length?	$\sqrt{289}$	±√2.25	$c^2 = \frac{49}{64}$
$\sqrt{y} = 6$	-√0.49	If a cube has a volume of 64 cm ³ , what is the side length?	$\pm \sqrt{0.01}$
$-\sqrt{3.24}$	$\frac{144}{169} = r^2$	$\sqrt{2.25}$	$\pm \sqrt{\frac{121}{289}}$
$-\sqrt{0.49}$	If a cube has a volume of 125 cm³, what is the side length?	$\sqrt{\frac{81}{25}}$	3√1
$-\sqrt{0.09}$	³ √1000	$\sqrt{z} = 8.4$	If a square has an area of 196 in², what is the side length?
If a cube has a volume of 216 cm³, what is the side length?	$0.0196 = m^2$	$\sqrt{\frac{361}{400}}$	$\sqrt{0.04}$

_			
$\sqrt{\frac{16}{49}}$	$324 = a^2$	$t^2 = 36$	$\sqrt[3]{\frac{27}{64}}$
$a^2 = \frac{25}{121}$	$\sqrt{\frac{49}{100}}$	$\pm \sqrt{0.81}$	If a square has an area of 256 in ² , what is the side length?
If a square has an area of 81 in², what is the side length?	$\sqrt{289}$	±√2.25	$c^2 = \frac{49}{64}$
$\sqrt{y} = 6$	-√0.49	If a cube has a volume of 64 cm ³ , what is the side length?	$\pm \sqrt{0.01}$
$-\sqrt{3.24}$	$\frac{144}{169} = r^2$	$\sqrt{2.25}$	$\pm \sqrt{\frac{121}{289}}$
$-\sqrt{0.49}$	If a cube has a volume of 125 cm³, what is the side length?	$\sqrt{\frac{81}{25}}$	3√1
$-\sqrt{0.09}$	³ √1000	$\sqrt{z} = 8.4$	If a square has an area of 196 in², what is the side length?
If a cube has a volume of 216 cm³, what is the side length?	$0.0196 = m^2$	$\sqrt{\frac{361}{400}}$	$\sqrt{0.04}$

Name all sets of numbers to which each number belongs.

12	-15	3.18	$-\sqrt{12}$
π	$\sqrt{25}$	$-2\frac{7}{9}$	$\sqrt{13}$
3√30	9. 3	$1\frac{1}{2}$	<u>8</u> 4

Name all sets of numbers to which each number belongs.

12	-15	3.18	$-\sqrt{12}$
π	$\sqrt{25}$	$-2\frac{7}{9}$	$\sqrt{13}$
3√30	9. 3	$1\frac{1}{2}$	<u>8</u> 4

Why is each classification below WRONG?

6.5	Real, rational,	$\sqrt{3}$	Real, rational
0.5	terminatina, integer	۷ ک	

What's wrong: What's wrong:

$$\frac{16}{4} \begin{array}{c} \textit{Real, rational,} \\ \textit{terminating, integer,} \\ \textit{whole} \end{array} \qquad \begin{array}{c} 0.\,\overline{61} \\ \textit{repeating, integer,} \\ \textit{whole} \end{array}$$

What's wrong: What's wrong:

1	Real, irrational	-7.36	Real, rational,
-			terminating, integer

What's wrong: What's wrong:

Provide an example of each classification.

Integer:	NOT Rational Number:
Natural Number:	NOT Whole Number:
Rational Number:	NOT Terminating Number:
Irrational Number:	NOT Integer:
Whole Number:	NOT Irrational:

Why is each classification below WRONG?

6.5	Real, rational,	$\sqrt{3}$	Real, rational
0.5	terminatina, integer	۷ ک	

What's wrong: What's wrong:

$$\frac{16}{4} \begin{array}{c} \textit{Real, rational,} \\ \textit{terminating, integer,} \\ \textit{whole} \end{array} \qquad \begin{array}{c} 0.\,\overline{61} \\ \textit{repeating, integer,} \\ \textit{whole} \end{array}$$

What's wrong: What's wrong:

1	Real, irrational	-7.36	Real, rational,
-			terminating, integer

What's wrong: What's wrong:

Provide an example of each classification.

Integer:	NOT Rational Number:
Natural Number:	NOT Whole Number:
Rational Number:	NOT Terminating Number:
Irrational Number:	NOT Integer:
Whole Number:	NOT Irrational:

Quick

When ordering and comparing real numbers, write each number in decimal notation OR write both numbers.

Ex: Fill in the \bigcirc with <, >, or = to make a true statement.

$$\sqrt{15}$$
 © $3\frac{9}{10}$

3.9 $\times 3.9$

 $\sqrt{15.21}$

15.21

Fill in each O with <, >, or = to make a true statement.

√7 O 2.8	$2\frac{1}{3} \bigcirc 2.\overline{3}$	√121 O 11	√30 ○ 5.6
2.45 O 2.4	√5 O 2.23	$\sqrt{6.25} {\rm O} 2 \frac{1}{2}$	$5\frac{1}{3}$ O $\sqrt{30}$
2.9 ○ √8	$6\frac{1}{6} \circlearrowleft \sqrt{38}$	2.1 ○ √4.41	2.8 ○ √24

Quick

When ordering and comparing real numbers, write each number in decimal notation OR write both numbers.

Ex: Fill in the \bigcirc with <, >, or = to make a true statement.

$$\sqrt{15}$$
 © $3\frac{9}{10}$

3.9 $\times 3.9$

 $\sqrt{15.21}$

15.21

Fill in each O with <, >, or = to make a true statement.

√7 O 2.8	$2\frac{1}{3} \bigcirc 2.\overline{3}$	√121 O 11	√30 ○ 5.6
2.45 O 2.4	√5 O 2.23	$\sqrt{6.25} {\rm O} 2 \frac{1}{2}$	$5\frac{1}{3}$ O $\sqrt{30}$
2.9 ○ √8	$6\frac{1}{6} \circlearrowleft \sqrt{38}$	2.1 ○ √4.41	2.8 ○ √24

Order each set of numbers from least to greatest. Verify your answers.

$$-\frac{9}{10}$$
, $\sqrt{1}$, -2.1 , $\sqrt{9}$, -1.5

$$3.1, -\frac{2}{5}, \sqrt{15}, \sqrt{4}, -1.3$$

$$-\frac{7}{10}$$
, $\sqrt{3}$, 0.5, $\frac{1}{3}$, 2.6

$$\frac{3}{8}$$
, $\sqrt{12}$, $\frac{5}{9}$, $\sqrt{11}$, -0.65

$$4\frac{1}{2}$$
, $\sqrt{15}$, 3, 4. $\overline{21}$

$$5\frac{4}{5}$$
, $\sqrt{30}$, 6, 5. $\overline{3}$

Order each set of numbers from least to greatest. Verify your answers.

$$-\frac{9}{10}$$
, $\sqrt{1}$, -2.1 , $\sqrt{9}$, -1.5

$$3.1, -\frac{2}{5}, \sqrt{15}, \sqrt{4}, -1.3$$

$$-\frac{7}{10}$$
, $\sqrt{3}$, 0.5, $\frac{1}{3}$, 2.6

$$\frac{3}{8}$$
, $\sqrt{12}$, $\frac{5}{9}$, $\sqrt{11}$, -0.65

$$4\frac{1}{2}$$
, $\sqrt{15}$, 3, 4. $\overline{21}$

$$5\frac{4}{5}$$
, $\sqrt{30}$, 6, 5. $\overline{3}$

Real Numbers Challenge!

Choose one of the following options below!

Create 5 Instagram photos that are comparing real numbers (<. >, and =).

Develop a facebook page for a real number. Use the "friends" and "minifeed" to highlight different classifications.

Get creative!

Make up a song
about the first 20
perfect squares.

Design an informational brochure about the classifications of real numbers.

Get writing!
Create a news
article related to
estimating square
roots.

Pick four different types of real numbers. Write a "story" where the numbers decide how to order themselves from least to greatest.

Make a poster comparing square roots and perfect squares. Include a world problem for each example.

You are a country music artist! Create a song singing "the blues" about being an irrational number.

Get creative!
Develop a poem that
explains the
classifications of the
real numbers.

Have your own idea? Let me know! I probably will say yes!

Real Numbers Challenge!

Choose one of the following options below!

Create 5 Instagram photos that are comparing real numbers (<. >, and =).

Develop a facebook page for a real number. Use the "friends" and "minifeed" to highlight different classifications.

Get creative!

Make up a song
about the first 20
perfect squares.

Design an informational brochure about the classifications of real numbers.

Get writing!
Create a news
article related to
estimating square
roots.

Pick four different types of real numbers. Write a "story" where the numbers decide how to order themselves from least to greatest.

Make a poster comparing square roots and perfect squares. Include a world problem for each example.

You are a country music artist! Create a song singing "the blues" about being an irrational number.

Get creative!
Develop a poem that
explains the
classifications of the
real numbers.

Have your own idea? Let me know! I probably will say yes!