Category A: Estimating Square Roots and Cube Roots

When estimating irrational numbers, the easiest way to compare values is by squaring (or cubing) the given values.

Ex: Between which two consecutive numbers would $\sqrt[3]{50}$ be located?
A. 1 and 2

$\sqrt[3]{1} \quad \sqrt[3]{8}$
B. 2 and 3

C. 3 and 4

Since it is the cube root of 50 , cube each number.
C would be the answer because 50 is between 27 and 64 .
Using the number line, which point is the best estimate of:

$$
\text { 1. }-\sqrt{20}
$$

4. $-\sqrt{3}$
5. $\sqrt{7}$
6. $\sqrt[3]{3}$
7. $\sqrt[3]{36}$
8. $\sqrt[3]{75}$

9. $\sqrt{130}$
10. $\sqrt[3]{40}$
11. $\sqrt{38}$
12. $\sqrt{48}$
13. $\sqrt[3]{100}$
14. $\sqrt{151}$

Category A: Estimating Square Roots and Cube Roots

When estimating irrational numbers, the easiest way to compare values is by squaring (or cubing) the given values.

Ex: Between which two consecutive numbers would $\sqrt[3]{50}$ be located?
A. 1 and 2

$\sqrt[3]{1} \quad \sqrt[3]{8}$
B. 2 and 3

C. 3 and 4

Since it is the cube root of 50 , cube each number.
C would be the answer because 50 is between 27 and 64 .
Using the number line, which point is the best estimate of:

$$
\text { 1. }-\sqrt{20}
$$

4. $-\sqrt{3}$
5. $\sqrt{7}$
6. $\sqrt[3]{3}$
7. $\sqrt[3]{36}$
8. $\sqrt[3]{75}$

9. $\sqrt{130}$
10. $\sqrt[3]{40}$
11. $\sqrt{38}$
12. $\sqrt{48}$
13. $\sqrt[3]{100}$
14. $\sqrt{151}$

Category A: Estimating Square Roots and Cube Roots
Between what two consecutive integers do the following real numbers lie between?

$\sqrt{5}$	$\sqrt{38}$	$\sqrt{53}$
$\sqrt{99}$	$\sqrt[3]{26}$	$\sqrt[3]{214}$
$\sqrt{227}$	$\sqrt{77}$	$\sqrt{171}$
$\sqrt{194}$	$\sqrt[3]{80}$	$\sqrt{147}$
$\sqrt[3]{999}$		

Category A: Estimating Square Roots and Cube Roots
Between what two consecutive integers do the following real numbers lie between?

$\sqrt{5}$	$\sqrt{38}$	$\sqrt{53}$
$\sqrt{99}$	$\sqrt[3]{26}$	$\sqrt[3]{214}$
$\sqrt{227}$	$\sqrt{77}$	$\sqrt{171}$
$\sqrt{194}$	$\sqrt[3]{80}$	$\sqrt{147}$
$\sqrt[3]{999}$		

Category B: Square Roots and Cube Roots

Square Roots!

Think! What number multiplied by itself equals 4?

$$
2 \times 2=4 \quad \text { so... } \sqrt{4}=2
$$

Cube Roots!

Think!
What number multiplied three times (I x w x h) equals 27?
$3 \times 3 \times 3=27$
so... $\sqrt[3]{27}=3$

$\sqrt{16}$	$-\sqrt{4}$	$\sqrt[3]{64}$	$\pm \sqrt{361}$
$\sqrt{36}$	$-\sqrt{144}$	$\sqrt{81}$	$\sqrt{-289}$
$h^{2}=121$	$\sqrt{100}$	$-\sqrt{400}$	$s^{2}=81$
$\sqrt{400}$	$\frac{1}{100}=d^{2}$	$-\sqrt{\frac{25}{441}}$	$\sqrt[3]{-512}$
$900=y^{2}$	$\sqrt{\frac{-81}{100}}$	$x^{2}=\frac{81}{169}$	$256=z^{2}$
$-\sqrt{9}$	$x^{2}=49$	$-\sqrt{36}$	$\sqrt{169}$

Category B: Square Roots and Cube Roots

Square Roots!

Think! What number multiplied by itself equals 4?

$$
2 \times 2=4 \quad \text { so... } \sqrt{4}=2
$$

Cube Roots!

Think!
What number multiplied three times (I x w x h) equals 27?
$3 \times 3 \times 3=27$
so... $\sqrt[3]{27}=3$

$\sqrt{16}$	$-\sqrt{4}$	$\sqrt[3]{64}$	$\pm \sqrt{361}$
$\sqrt{36}$	$-\sqrt{144}$	$\sqrt{81}$	$\sqrt{-289}$
$h^{2}=121$	$\sqrt{100}$	$-\sqrt{400}$	$s^{2}=81$
$\sqrt{400}$	$\frac{1}{100}=d^{2}$	$-\sqrt{\frac{25}{441}}$	$\sqrt[3]{-512}$
$900=y^{2}$	$\sqrt{\frac{-81}{100}}$	$x^{2}=\frac{81}{169}$	$256=z^{2}$
$-\sqrt{9}$	$x^{2}=49$	$-\sqrt{36}$	$\sqrt{169}$

Category B: Square Roots and Cube Roots

$\sqrt{\frac{16}{49}}$	$324=a^{2}$	$t^{2}=36$	$\sqrt[3]{\frac{27}{64}}$
$a^{2}=\frac{25}{121}$	$\sqrt{\frac{49}{100}}$	$\pm \sqrt{0.81}$	If a square has an area of 256 in ${ }^{2}$, what is the side length?
If a square has an area of $81 \mathrm{in}^{2}$, what is the side length?	$\sqrt{289}$	$\pm \sqrt{2.25}$	$c^{2}=\frac{49}{64}$
$\sqrt{y}=6$	$-\sqrt{0.49}$	If a cube has a volume of $64 \mathrm{~cm}^{3}$, what is the side length?	$\pm \sqrt{0.01}$
$-\sqrt{3.24}$	$\frac{144}{169}=r^{2}$	$\sqrt{2.25}$	$\pm \sqrt{\frac{121}{289}}$
$-\sqrt{0.49}$	If a cube has a volume of $125 \mathrm{~cm}^{3}$, what is the side length?	$\sqrt{\frac{81}{25}}$	$\sqrt[3]{1}$
$-\sqrt{0.09}$	$\sqrt[3]{1000}$	$\sqrt{Z}=8.4$	If a square has an area of 196 in², what is the side length?
If a cube has a volume of $216 \mathrm{~cm}^{3}$, what is the side length?	$0.0196=m^{2}$	$\sqrt{\frac{361}{400}}$	$\sqrt{0.04}$

Category B: Square Roots and Cube Roots

$\sqrt{\frac{16}{49}}$	$324=a^{2}$	$t^{2}=36$	$\sqrt[3]{\frac{27}{64}}$
$a^{2}=\frac{25}{121}$	$\sqrt{\frac{49}{100}}$	$\pm \sqrt{0.81}$	If a square has an area of 256 in ${ }^{2}$, what is the side length?
If a square has an area of $81 \mathrm{in}^{2}$, what is the side length?	$\sqrt{289}$	$\pm \sqrt{2.25}$	$c^{2}=\frac{49}{64}$
$\sqrt{y}=6$	$-\sqrt{0.49}$	If a cube has a volume of $64 \mathrm{~cm}^{3}$, what is the side length?	$\pm \sqrt{0.01}$
$-\sqrt{3.24}$	$\frac{144}{169}=r^{2}$	$\sqrt{2.25}$	$\pm \sqrt{\frac{121}{289}}$
$-\sqrt{0.49}$	If a cube has a volume of $125 \mathrm{~cm}^{3}$, what is the side length?	$\sqrt{\frac{81}{25}}$	$\sqrt[3]{1}$
$-\sqrt{0.09}$	$\sqrt[3]{1000}$	$\sqrt{Z}=8.4$	If a square has an area of 196 in², what is the side length?
If a cube has a volume of $216 \mathrm{~cm}^{3}$, what is the side length?	$0.0196=m^{2}$	$\sqrt{\frac{361}{400}}$	$\sqrt{0.04}$

Category C: Classifying Real Numbers

Name all sets of numbers to which each number belongs.

12	-15	3.18	$-\sqrt{12}$
π	$\sqrt{25}$	$-2 \frac{7}{9}$	$\sqrt{13}$
$\sqrt[3]{30}$	$9 . \overline{3}$	$1 \frac{1}{2}$	$\frac{8}{4}$

Category C: Classifying Real Numbers

Name all sets of numbers to which each number belongs.

12	-15	3.18	$-\sqrt{12}$
π	$\sqrt{25}$	$-2 \frac{7}{9}$	$\sqrt{13}$
$\sqrt[3]{30}$	$9 . \overline{3}$	$1 \frac{1}{2}$	$\frac{8}{4}$

Category C: Classifying Real Numbers

Why is each classification below WRONG?

$6.5 \begin{aligned} & \text { Real, rational, } \\ & \text { terminating, integer }\end{aligned}$

What's wrong:
16 Real, rational,
$\overline{4}$ terminating, integer,
4 whole

What's wrong:

1 Real, irrational
$\overline{5}$

What's wrong:
What's wrong:

Provide an example of each classification.

Integer:

Natural Number:

Rational Number:

Irrational Number:

Whole Number:
NOT Rational Number:

NOT Whole Number:

NOT Terminating Number:

NOT Integer:

NOT Irrational:

Category C: Classifying Real Numbers

Why is each classification below WRONG?

$6.5 \begin{aligned} & \text { Real, rational, } \\ & \text { terminating, integer }\end{aligned}$

What's wrong:
16 Real, rational,
$\overline{4}$ terminating, integer,
4 whole

What's wrong:

1 Real, irrational
$\overline{5}$

What's wrong:
What's wrong:

Provide an example of each classification.

Integer:

Natural Number:

Rational Number:

Irrational Number:

Whole Number:
NOT Rational Number:

NOT Whole Number:

NOT Terminating Number:

NOT Integer:

NOT Irrational:

Category D: Ordering Real Numbers

When ordering and comparing real numbers, write each number in decimal notation OR write both numbers with radicals.

Ex: Fill in the \bigcirc with $<,>$, or $=$ to make a true statement.
$\sqrt{15}$ © $3 \frac{9}{10}$
3.9
$\times 3.9$
$\sqrt{15.21}$
15.21

Fill in each O with $<,>$, or $=$ to make a true statement.

$\sqrt{7} \bigcirc 2.8$	$2 \frac{1}{3} \bigcirc 2 . \overline{3}$	$\sqrt{121} \bigcirc 11$	$\sqrt{30} \bigcirc 5.6$
$2.45 \bigcirc 2 . \overline{4}$	$\sqrt{5} \bigcirc 2.23$	$\sqrt{6.25} \bigcirc 2 \frac{1}{2}$	$5 \frac{1}{3} \bigcirc \sqrt{30}$
$2.9 \bigcirc \sqrt{8}$	$6 \frac{1}{6} \bigcirc \sqrt{38}$	$2.1 \bigcirc \sqrt{4.41}$	$2 . \overline{8} \bigcirc \sqrt{24}$

Category D: Ordering Real Numbers

When ordering and comparing real numbers, write each number in decimal notation OR write both numbers with radicals.

Ex: Fill in the \bigcirc with $<,>$, or $=$ to make a true statement.
$\sqrt{15}$ © $3 \frac{9}{10}$
3.9
$\times 3.9$
$\sqrt{15.21}$
15.21

Fill in each O with $<,>$, or $=$ to make a true statement.

$\sqrt{7} \bigcirc 2.8$	$2 \frac{1}{3} \bigcirc 2 . \overline{3}$	$\sqrt{121} \bigcirc 11$	$\sqrt{30} \bigcirc 5.6$
$2.45 \bigcirc 2 . \overline{4}$	$\sqrt{5} \bigcirc 2.23$	$\sqrt{6.25} \bigcirc 2 \frac{1}{2}$	$5 \frac{1}{3} \bigcirc \sqrt{30}$
$2.9 \bigcirc \sqrt{8}$	$6 \frac{1}{6} \bigcirc \sqrt{38}$	$2.1 \bigcirc \sqrt{4.41}$	$2 . \overline{8} \bigcirc \sqrt{24}$

Category D: Ordering Real Numbers
Order each set of numbers from least to greatest. Verify your answers.

$$
-\frac{9}{10}, \sqrt{1},-2.1, \sqrt{9},-1.5
$$

$$
3.1,-\frac{2}{5}, \sqrt{15}, \sqrt{4},-1.3
$$

$$
-\frac{7}{10}, \sqrt{3}, 0.5, \frac{1}{3}, 2.6
$$

$$
\frac{3}{8}, \sqrt{12}, \frac{5}{9}, \sqrt{11},-0.65
$$

$$
4 \frac{1}{2}, \sqrt{15}, 3,4 . \overline{21}
$$

$$
5 \frac{4}{5}, \sqrt{30}, 6,5 . \overline{3}
$$

Category D: Ordering Real Numbers
Order each set of numbers from least to greatest. Verify your answers.

$$
-\frac{9}{10}, \sqrt{1},-2.1, \sqrt{9},-1.5
$$

$$
3.1,-\frac{2}{5}, \sqrt{15}, \sqrt{4},-1.3
$$

$$
-\frac{7}{10}, \sqrt{3}, 0.5, \frac{1}{3}, 2.6
$$

$$
\frac{3}{8}, \sqrt{12}, \frac{5}{9}, \sqrt{11},-0.65
$$

$$
4 \frac{1}{2}, \sqrt{15}, 3,4 . \overline{21}
$$

$$
5 \frac{4}{5}, \sqrt{30}, 6,5 . \overline{3}
$$

Category E

Real Numbers Challenge!

Choose one of the following options below!

Create 5 Instagram photos that are comparing real numbers (<. >, and $=$).	Develop a facebook page for a real number. Use the "friends" and "minifeed" to highlight different classifications.	Get creative! Make up a song about the first 20 perfect squares.
Design an informational brochure about the classifications of real numbers.	Get writing! Create a news article related to estimating square roots.	Pick four different types of real numbers. Write a "story" where the numbers decide how to order themselves from least to greatest.
Make a poster comparing square roots and perfect squares. Include a world problem for each example.	You are a country music artist! Create a song singing "the blues" about being an irrational number.	Get creative! Develop a poem that explains the classifications of the real numbers.

Category E

Real Numbers Challenge!

Choose one of the following options below!

Create 5 Instagram photos that are comparing real numbers (<. >, and $=$).	Develop a facebook page for a real number. Use the "friends" and "minifeed" to highlight different classifications.	Get creative! Make up a song about the first 20 perfect squares.
Design an informational brochure about the classifications of real numbers.	Get writing! Create a news article related to estimating square roots.	Pick four different types of real numbers. Write a "story" where the numbers decide how to order themselves from least to greatest.
Make a poster comparing square roots and perfect squares. Include a world problem for each example.	You are a country music artist! Create a song singing "the blues" about being an irrational number.	Get creative! Develop a poem that explains the classifications of the real numbers.

